数学学科Seminar第2826讲 基于经验插值法的新型有理逼近算法

创建时间:  2025/04/17  邵奋芬   浏览次数:   返回

报告题目 (Title):A New Rational Approximation Algorithm via the Empirical Interpolation Method

中文题目:基于经验插值法的新型有理逼近算法

报告人 (Speaker):李雨文 研究员(浙江大学)

报告时间 (Time):2025年4月19日 (周六) 9:45

报告地点 (Place):校本部GJ303

邀请人(Inviter):纪丽洁

主办部门:8455新葡萄场网站数学系

摘要:In this talk, I will present a rational approximation algorithm via the empirical interpolation method for interpolating a family of parametrized functions to rational polynomials with invariant poles, leading to efficient numerical algorithms for space-fractional differential equations, parameter-robust preconditioning, and evaluation of matrix functions. Compared to classical rational approximation algorithms, the proposed method is more efficient for approximating a large number of target functions. In addition, I will give a convergence estimate of the rational approximation algorithm using the metric entropy numbers.

上一条:数学学科Seminar第2827讲 针对四阶奇异摄动问题的修正内罚虚拟元方法

下一条:数学学科Seminar第2825讲 针对非线性薛定谔方程的高效双时间网格紧致交替方向方法及其误差分析


数学学科Seminar第2826讲 基于经验插值法的新型有理逼近算法

创建时间:  2025/04/17  邵奋芬   浏览次数:   返回

报告题目 (Title):A New Rational Approximation Algorithm via the Empirical Interpolation Method

中文题目:基于经验插值法的新型有理逼近算法

报告人 (Speaker):李雨文 研究员(浙江大学)

报告时间 (Time):2025年4月19日 (周六) 9:45

报告地点 (Place):校本部GJ303

邀请人(Inviter):纪丽洁

主办部门:8455新葡萄场网站数学系

摘要:In this talk, I will present a rational approximation algorithm via the empirical interpolation method for interpolating a family of parametrized functions to rational polynomials with invariant poles, leading to efficient numerical algorithms for space-fractional differential equations, parameter-robust preconditioning, and evaluation of matrix functions. Compared to classical rational approximation algorithms, the proposed method is more efficient for approximating a large number of target functions. In addition, I will give a convergence estimate of the rational approximation algorithm using the metric entropy numbers.

上一条:数学学科Seminar第2827讲 针对四阶奇异摄动问题的修正内罚虚拟元方法

下一条:数学学科Seminar第2825讲 针对非线性薛定谔方程的高效双时间网格紧致交替方向方法及其误差分析