数学学科Seminar第2827讲 针对四阶奇异摄动问题的修正内罚虚拟元方法

创建时间:  2025/04/17  邵奋芬   浏览次数:   返回

报告题目 (Title):A modified interior penalty virtual element method for fourth-order singular perturbation problems

中文题目:针对四阶奇异摄动问题的修正内罚虚拟元方法

报告人 (Speaker):余跃 副教授(湘潭大学)

报告时间 (Time):2025年4月19日 (周六) 10:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):纪丽洁

主办部门:8455新葡萄场网站数学系

摘要:This work is dedicated to the numerical solution of a fourth-order singular perturbation problem using the interior penalty virtual element method (IPVEM). Compared with the original IPVEM proposed by Zhao et al., the study introduces modifications to the jumps and averages in the penalty term, as well as presents a mesh-dependent selection of the penalty parameter. Drawing inspiration from the modified Morley finite element methods, we leverage the conforming interpolation technique to handle the lower part of the bilinear form in the error analysis. We establish the optimal convergence in the energy norm and provide a rigorous proof of uniform convergence concerning the perturbation parameter in the lowest-order case.

上一条:数学学科Seminar第2828讲 三角形网格上双曲守恒律方程的高阶矩Hermite WENO格式

下一条:数学学科Seminar第2826讲 基于经验插值法的新型有理逼近算法


数学学科Seminar第2827讲 针对四阶奇异摄动问题的修正内罚虚拟元方法

创建时间:  2025/04/17  邵奋芬   浏览次数:   返回

报告题目 (Title):A modified interior penalty virtual element method for fourth-order singular perturbation problems

中文题目:针对四阶奇异摄动问题的修正内罚虚拟元方法

报告人 (Speaker):余跃 副教授(湘潭大学)

报告时间 (Time):2025年4月19日 (周六) 10:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):纪丽洁

主办部门:8455新葡萄场网站数学系

摘要:This work is dedicated to the numerical solution of a fourth-order singular perturbation problem using the interior penalty virtual element method (IPVEM). Compared with the original IPVEM proposed by Zhao et al., the study introduces modifications to the jumps and averages in the penalty term, as well as presents a mesh-dependent selection of the penalty parameter. Drawing inspiration from the modified Morley finite element methods, we leverage the conforming interpolation technique to handle the lower part of the bilinear form in the error analysis. We establish the optimal convergence in the energy norm and provide a rigorous proof of uniform convergence concerning the perturbation parameter in the lowest-order case.

上一条:数学学科Seminar第2828讲 三角形网格上双曲守恒律方程的高阶矩Hermite WENO格式

下一条:数学学科Seminar第2826讲 基于经验插值法的新型有理逼近算法