数学学科Seminar第2825讲 针对非线性薛定谔方程的高效双时间网格紧致交替方向方法及其误差分析

创建时间:  2025/04/17  邵奋芬   浏览次数:   返回

报告题目 (Title):An efficient time-two mesh compact ADI method for nonlinear Schrodinger equations with error analysis

中文题目:针对非线性薛定谔方程的高效双时间网格紧致交替方向方法及其误差分析

报告人 (Speaker):何斯日古楞 教授(呼和浩特民族学院)

报告时间 (Time):2025年4月19日 (周六) 9:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):纪丽洁

主办部门:8455新葡萄场网站数学系

摘要:A time two-mesh algorithm combined with compact difference ADI scheme is proposed for solving the two-dimensional nonlinear Schrodinger equation. This algorithm contains three steps: first, a nonlinear implicit system is solved on the time coarse mesh by ADI technique; next, based on the coarse mesh solutions, some useful values on the time fine mesh are provided by applying the Lagrange's linear interpolation formula; finally, a linear system is solved on the time fine mesh. Taking advantage of the discrete energy and the mathematical induction methods, result with in the discrete L2 norm and H1 norm are deduced, respectively. Numerical experiments on some model problems show that the porposed algorithm preserve the conservation laws of charge and energy and is very effective. Here, and are the temporal parameters on the coarse and fine mesh, respectively, and is the space step.

上一条:数学学科Seminar第2826讲 基于经验插值法的新型有理逼近算法

下一条:数学学科Seminar第2824讲 高维含时问题的动态非线性参数近似


数学学科Seminar第2825讲 针对非线性薛定谔方程的高效双时间网格紧致交替方向方法及其误差分析

创建时间:  2025/04/17  邵奋芬   浏览次数:   返回

报告题目 (Title):An efficient time-two mesh compact ADI method for nonlinear Schrodinger equations with error analysis

中文题目:针对非线性薛定谔方程的高效双时间网格紧致交替方向方法及其误差分析

报告人 (Speaker):何斯日古楞 教授(呼和浩特民族学院)

报告时间 (Time):2025年4月19日 (周六) 9:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):纪丽洁

主办部门:8455新葡萄场网站数学系

摘要:A time two-mesh algorithm combined with compact difference ADI scheme is proposed for solving the two-dimensional nonlinear Schrodinger equation. This algorithm contains three steps: first, a nonlinear implicit system is solved on the time coarse mesh by ADI technique; next, based on the coarse mesh solutions, some useful values on the time fine mesh are provided by applying the Lagrange's linear interpolation formula; finally, a linear system is solved on the time fine mesh. Taking advantage of the discrete energy and the mathematical induction methods, result with in the discrete L2 norm and H1 norm are deduced, respectively. Numerical experiments on some model problems show that the porposed algorithm preserve the conservation laws of charge and energy and is very effective. Here, and are the temporal parameters on the coarse and fine mesh, respectively, and is the space step.

上一条:数学学科Seminar第2826讲 基于经验插值法的新型有理逼近算法

下一条:数学学科Seminar第2824讲 高维含时问题的动态非线性参数近似