数学学科Seminar第2823讲 微磁模拟中的二阶半隐式投影方法与理论分析

创建时间:  2025/04/17  邵奋芬   浏览次数:   返回

报告题目 (Title):Second-order Semi-implicit Projection Methods and Analysis for Micromagnetics Simulations(微磁模拟中的二阶半隐式投影方法与理论分析)

报告人 (Speaker): 谢长健 (西交利物浦大学)

报告时间 (Time):2025年4月19日(周六)15:00

报告地点 (Place): 校本部Gj303

邀请人(Inviter):秦晓雪

主办部门:8455新葡萄场网站数学系

报告摘要:The numerical approximation of the Landau-Lifshitz equation for ferromagnetic magnetization dynamics is considered. This highly nonlinear, non-convex constrained equation, with multiple equivalent forms and an infinite - domain auxiliary problem, poses challenges for numerical methods.

A fully discrete semi-implicit method based on second-order backward differentiation and one-sided extrapolation is introduced. A projection step preserves magnetization length. Rigorous convergence analysis shows unconditional stability and second-order accuracy in time and space when spatial and temporal step-sizes are of the same order, relaxing temporal step-size restrictions compared to implicit schemes. The unique solvability of the numerical solution, without step-size assumptions, is proven for the micromagnetics model. Numerical examples in 1D and 3D verify these theoretical properties.

上一条:数学学科Seminar第2824讲 高维含时问题的动态非线性参数近似

下一条:数学学科Seminar第2822讲 通过混合策略加速朗之万动力学


数学学科Seminar第2823讲 微磁模拟中的二阶半隐式投影方法与理论分析

创建时间:  2025/04/17  邵奋芬   浏览次数:   返回

报告题目 (Title):Second-order Semi-implicit Projection Methods and Analysis for Micromagnetics Simulations(微磁模拟中的二阶半隐式投影方法与理论分析)

报告人 (Speaker): 谢长健 (西交利物浦大学)

报告时间 (Time):2025年4月19日(周六)15:00

报告地点 (Place): 校本部Gj303

邀请人(Inviter):秦晓雪

主办部门:8455新葡萄场网站数学系

报告摘要:The numerical approximation of the Landau-Lifshitz equation for ferromagnetic magnetization dynamics is considered. This highly nonlinear, non-convex constrained equation, with multiple equivalent forms and an infinite - domain auxiliary problem, poses challenges for numerical methods.

A fully discrete semi-implicit method based on second-order backward differentiation and one-sided extrapolation is introduced. A projection step preserves magnetization length. Rigorous convergence analysis shows unconditional stability and second-order accuracy in time and space when spatial and temporal step-sizes are of the same order, relaxing temporal step-size restrictions compared to implicit schemes. The unique solvability of the numerical solution, without step-size assumptions, is proven for the micromagnetics model. Numerical examples in 1D and 3D verify these theoretical properties.

上一条:数学学科Seminar第2824讲 高维含时问题的动态非线性参数近似

下一条:数学学科Seminar第2822讲 通过混合策略加速朗之万动力学