数学系Seminar第1508期 椭圆方程基于P1元的中心差分方法的H^1超收敛

创建时间:  2017/09/26  龚惠英   浏览次数:   返回

报告主题:椭圆方程基于P1元的中心差分方法的H^1超收敛
报告人:何银年  教授  (西安交通大学)
报告时间:2017年 10月9日(周一)10:00
报告地点:校本部G507
邀请人:李常品
主办部门:8455新葡萄场网站数学系 
报告摘要: In this paper, the coefficient matrixes of the center finite difference (CFD) method based on P1-element on the non-uniform mesh for solving the elliptic equation is reduced and the H1-stability and convergence of the CFD solution uh is provided. Next, the H1-super-convergence of u_h to I_hu is obtained under the case of the almost-uniform mesh. Based on the H^1-super-convergence of u_h to I_hu, the optimal L^2-error estimate of the numerical solution u_h and the H^1-super-convergence error estimate of the interpolation solution I^2_{2h}u_h are derived. Finally, some numerical tests are made to show the analytical results of the CFD method.


欢迎教师、学生参加 !

上一条:物理学科Seminar第365讲 二维时空中的“细长因果集”面积计算

下一条:物理学科Seminar第364讲 通过周期驱动光晶格势的幅度和周期实现的可调控性Floquet-Bloch能带(Tunable Floquet-Bloch bands in optical lattices with amplitude modulation and periodic shaking


数学系Seminar第1508期 椭圆方程基于P1元的中心差分方法的H^1超收敛

创建时间:  2017/09/26  龚惠英   浏览次数:   返回

报告主题:椭圆方程基于P1元的中心差分方法的H^1超收敛
报告人:何银年  教授  (西安交通大学)
报告时间:2017年 10月9日(周一)10:00
报告地点:校本部G507
邀请人:李常品
主办部门:8455新葡萄场网站数学系 
报告摘要: In this paper, the coefficient matrixes of the center finite difference (CFD) method based on P1-element on the non-uniform mesh for solving the elliptic equation is reduced and the H1-stability and convergence of the CFD solution uh is provided. Next, the H1-super-convergence of u_h to I_hu is obtained under the case of the almost-uniform mesh. Based on the H^1-super-convergence of u_h to I_hu, the optimal L^2-error estimate of the numerical solution u_h and the H^1-super-convergence error estimate of the interpolation solution I^2_{2h}u_h are derived. Finally, some numerical tests are made to show the analytical results of the CFD method.


欢迎教师、学生参加 !

上一条:物理学科Seminar第365讲 二维时空中的“细长因果集”面积计算

下一条:物理学科Seminar第364讲 通过周期驱动光晶格势的幅度和周期实现的可调控性Floquet-Bloch能带(Tunable Floquet-Bloch bands in optical lattices with amplitude modulation and periodic shaking