数学系Seminar第1462期 PDE的Weak Galerkin 方法的新结果

创建时间:  2017/05/27  龚惠英   浏览次数:   返回

报告主题:PDE的Weak Galerkin 方法的新结果    
报告人:刘江国  教授  (Colorado State University)
报告时间:2017年5月31日(周三)14:00
报告地点:校本部G507
邀请人:马和平
主办部门:8455新葡萄场网站数学系  
报告摘要:In this talk, we present new ideas of weak Galerkin (WG) finite element methods for solving the Darcy and elasticity equations.  Given a mesh, the WG methodology sets basis functions in element interiors and edges/faces and establishes (through integration by parts) discrete weak gradient or divergence or curl in certain spaces that have desired approximation capacity.  The WG approach offers also nice properties, e.g., local mass conservation and flux normal continuity for Darcy flow and locking-free for elasticity. For the Darcy equation in 2-dim, we develop the lowest order WG finite element method that utilizes constant approximants for pressure but specifies their discrete weak gradients in Raviart-Thomas spaces.  This particular method treats triangular, rectangular, and quadrilateral meshes in a unified approach and attains optimal-order convergence in pressure, velocity, and flux. Similarly, constant vector approximants can be used in element interiors and edges/faces for solving the linear elasticity equation in 2-dim or 3-dim, whereas first order accuracy are obtained for displacement, stress, and dilation.

欢迎教师、学生参加 !

上一条:8455新葡萄场网站“当代科学前沿讲坛”第238讲 拓扑相、拓扑缺陷及二维相变

下一条:数学系Seminar第1466期 置换矩阵约束优化问题的L_p正则化算法


数学系Seminar第1462期 PDE的Weak Galerkin 方法的新结果

创建时间:  2017/05/27  龚惠英   浏览次数:   返回

报告主题:PDE的Weak Galerkin 方法的新结果    
报告人:刘江国  教授  (Colorado State University)
报告时间:2017年5月31日(周三)14:00
报告地点:校本部G507
邀请人:马和平
主办部门:8455新葡萄场网站数学系  
报告摘要:In this talk, we present new ideas of weak Galerkin (WG) finite element methods for solving the Darcy and elasticity equations.  Given a mesh, the WG methodology sets basis functions in element interiors and edges/faces and establishes (through integration by parts) discrete weak gradient or divergence or curl in certain spaces that have desired approximation capacity.  The WG approach offers also nice properties, e.g., local mass conservation and flux normal continuity for Darcy flow and locking-free for elasticity. For the Darcy equation in 2-dim, we develop the lowest order WG finite element method that utilizes constant approximants for pressure but specifies their discrete weak gradients in Raviart-Thomas spaces.  This particular method treats triangular, rectangular, and quadrilateral meshes in a unified approach and attains optimal-order convergence in pressure, velocity, and flux. Similarly, constant vector approximants can be used in element interiors and edges/faces for solving the linear elasticity equation in 2-dim or 3-dim, whereas first order accuracy are obtained for displacement, stress, and dilation.

欢迎教师、学生参加 !

上一条:8455新葡萄场网站“当代科学前沿讲坛”第238讲 拓扑相、拓扑缺陷及二维相变

下一条:数学系Seminar第1466期 置换矩阵约束优化问题的L_p正则化算法