报告题目 (Title):New properties of a special matrix related to positive-definite matrices(与正定矩阵相关的特殊矩阵的新性质)
报告人 (Speaker):黄少武 副教授(莆田学院)
报告时间 (Time):2025年4月25日 (周五) 15:30
报告地点 (Place):校本部GJ303
邀请人(Inviter):王卿文 教授
主办部门:8455新葡萄场网站数学系
报告摘要:Let $H$ be a $2n\times 2n$ real symmetric positive-definite matrix. Suppose that $H\circ H=(H_{ij})_{2n\times 2n}$ is a partitioned matrix, in which $\circ$ represents the Hadamard product and the block $H_{ij}$ has order $n\times n$, $1\leq i,j \leq 2$. Several new properties on the matrix $\widetilde{H}$ are derived including inequalities that involve the symplectic eigenvalues and the usual eigenvalues, where $2\widetilde{H}=H_{11}+H_{22}+H_{12}+H_{21}$.