数学学科Seminar第2766讲 梯度流问题显式指数Runge-Kutta方法的平均能量耗散率

创建时间:  2024/11/06  龚惠英   浏览次数:   返回

报告题目 (Title):Average energy dissipation rates of explicit exponential Runge-Kutta methods for gradient flow problems (梯度流问题显式指数Runge-Kutta方法的平均能量耗散率)

报告人 (Speaker):廖洪林 教授(南京航空航天大学)

报告时间 (Time):2024年11月13日(周三) 15:30-17:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):李常品、蔡敏

主办部门:8455新葡萄场网站数学系

报告摘要:We propose a unified theoretical framework to examine the energy dissipation properties at all stages of explicit exponential Runge-Kutta (EERK) methods for gradient flow problems. The main part of the novel framework is to construct the differential form of EERK method by using the difference coefficients of method and the so-called discrete orthogonal convolution kernels. As the main result, we prove that an EERK method can preserve the original energy dissipation law unconditionally if the associated differentiation matrix is positive semi-definite. A simple indicator, namely average dissipation rate, is also introduced for these multi-stage methods to evaluate the overall energy dissipation rate of an EERK method such that one can choose proper parameters in some parameterized EERK methods or compare different kinds of EERK methods. Some existing EERK methods in the literature are evaluated from the perspective of preserving the original energy dissipation law and the energy dissipation rate. Some numerical examples are also included to support our theory.

上一条:8455新葡萄场网站核心数学研究所——几何与分析综合报告第94讲 凸几何中的格点不等式

下一条:数学学科Seminar第2765讲 基于边值方法求解扩散方程的全离散方法


数学学科Seminar第2766讲 梯度流问题显式指数Runge-Kutta方法的平均能量耗散率

创建时间:  2024/11/06  龚惠英   浏览次数:   返回

报告题目 (Title):Average energy dissipation rates of explicit exponential Runge-Kutta methods for gradient flow problems (梯度流问题显式指数Runge-Kutta方法的平均能量耗散率)

报告人 (Speaker):廖洪林 教授(南京航空航天大学)

报告时间 (Time):2024年11月13日(周三) 15:30-17:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):李常品、蔡敏

主办部门:8455新葡萄场网站数学系

报告摘要:We propose a unified theoretical framework to examine the energy dissipation properties at all stages of explicit exponential Runge-Kutta (EERK) methods for gradient flow problems. The main part of the novel framework is to construct the differential form of EERK method by using the difference coefficients of method and the so-called discrete orthogonal convolution kernels. As the main result, we prove that an EERK method can preserve the original energy dissipation law unconditionally if the associated differentiation matrix is positive semi-definite. A simple indicator, namely average dissipation rate, is also introduced for these multi-stage methods to evaluate the overall energy dissipation rate of an EERK method such that one can choose proper parameters in some parameterized EERK methods or compare different kinds of EERK methods. Some existing EERK methods in the literature are evaluated from the perspective of preserving the original energy dissipation law and the energy dissipation rate. Some numerical examples are also included to support our theory.

上一条:8455新葡萄场网站核心数学研究所——几何与分析综合报告第94讲 凸几何中的格点不等式

下一条:数学学科Seminar第2765讲 基于边值方法求解扩散方程的全离散方法